

AUTOMATED VITRIFICATION

Miquel Solé Inarejos, PhD

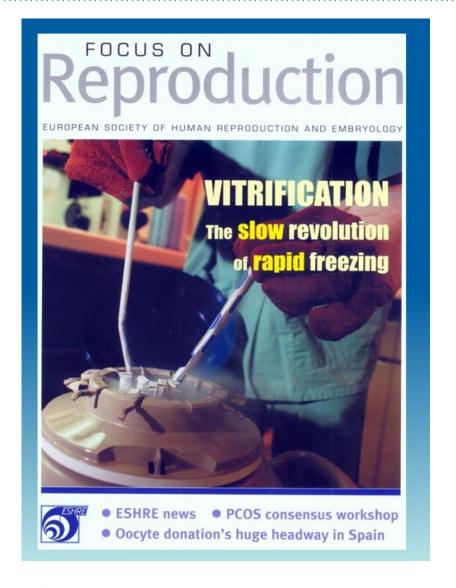
Hospital Universitario Dexeus Barcelona

I have the following potential conflict of interest:

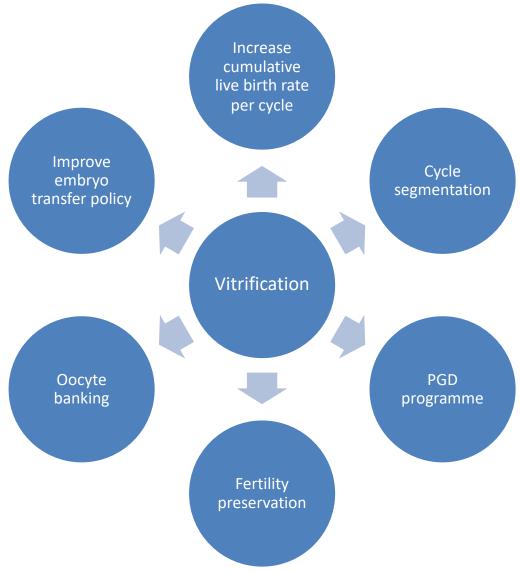
Receipt of research suport, material and media for GAVI system

1

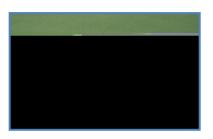
New technologies



- Great advances in Assisted Reproduction Technologies (ART) in recent years in all areas
 - IVF lab: undisturbed culture (time-lapse)
 - PGD lab: CGH, NGS
 - Cryobiology lab: vitrification

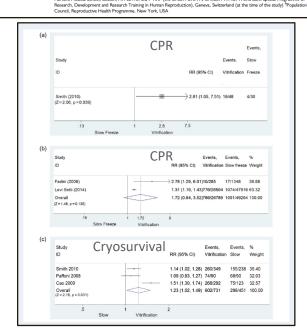

Vitrification re-surface

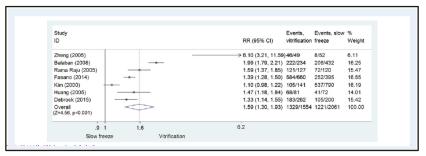
Vitrification becomes really important tool in TRA

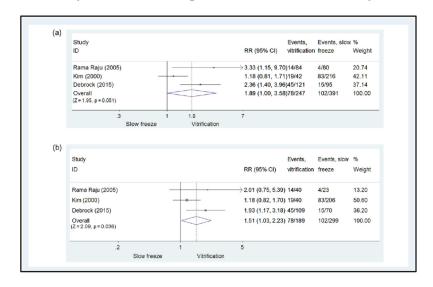


Vitrification methodology

- Process requires high concentrations of CPA and high cooling-warming rates
- Initially introduced with cleavage stage embryos (Mukaida et al. 1998)
- A little later with oocytes (Kuleshova et al. 1999)
- Many modifications in the last 20 years
- Excess of carriers in the market not all with adequate cooling-warming rates
- Cryotop most commonly used protocol for oocytes and embryos (Kuwayama *et al.* 2005).




Efficiency of vitrification



Oocyte slow freezing versus vitrification

Embryo slow freezing versus vitrification: Cryosurvival

Embryo slow freezing versus vitrification: CPR

Results in oocyte vitrification

	Vol.25, No.9 pp. 2239–2246, 2010 on June 30, 2010 doi:10.1093/humrep/deq146
human reproduction	ORIGINAL ARTICLE Embryology
	Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial
	Ana Cobo*, Marcos Meseguer, José Remohí, and Antonio Pellicer Instituto Valenciano de Infertilidad (Vin), University of Valencia, Valencia, Spain
	*Correspondence address. E-mail: acobo@inles Submitted on February 11, 2010; resubmitted on April 6, 2010; accepted on May 11, 2010

Human Reproduction of March 22, 2012 doi:10.1093/humrep/des088

human reproduction

Consistent and predictable delivery rates after oocyte vitrification:
an observational longitudinal cohort multicentric study

Laura Rienzi^{1,*}, Ana Cobo², Alessio Paffoni³, Claudia Scarduelli³, Antonio Capalbo¹, Gábor Vajta⁴, José Remohí², Guido Ragni³, and Filippo Maria Ubaldi¹

'Conception of Capalbo Carden Ca

- Fertilization rate
- Embryo quality
- Clinical pregnancy rate
- Live birth rate

Oocyte donation programme: Clinical pregnancy rate

Number of cycles: 3292 (2012-2018)

Inseminated oocytes	Fresh oocytes n= 1106	Vitrified oocytes n= 633
1-4	34,6%	35.3%
5-7	46.2%	44.5%
8-12	56.4%	53.2% ≠ 2-3%
>12	60.4%	57.1%

A critical look at our results: can we improve them?

Oocyte donation programme:

SURVIVAL RATE: 80-85%

Survival rate: 82.7% (9473/11448)

Oocyte donation with <50% of survival rate: 4.5%</p>

Fertility preservation for social reasons:

Survival rate: 80.6% (82/98)

Pregnancy rate: 50% (5/10)

Fertility preservation for medical reasons:

Survival rate: 85.1% (74/87)

Pregnancy rate: 62.5% (5/8)

PGD programme: oocyte accumulation:

Survival rate: 81.6%

➤ Biopsiable embryos on D3 (vitrified vs fresh): 75.6% vs 93.8%

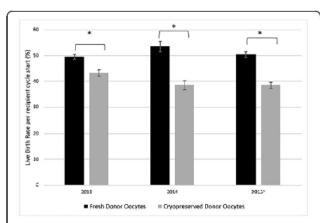
Data from Society for Assisted Reproduction Technology (SART)

Kushnir et al. Journal of Ovarian Research (2018) 11:2 DOI 10.1186/s13048-017-0378-4

Journal of Ovarian Research

RESEARCH Open Access

New national outcome data on fresh versus cryopreserved donor oocytes



Vitaly A. Kushnir^{1,2*}, Sarah K. Darmon¹, David H. Barad^{1,3} and Norbert Gleicher^{1,3,4,5}

Table 1 Fresh and Cryopreserved Donor Oocyte cycles reporte	d
to Society for Assisted Reproductive Technology, 2013–2015	

	Fresh Oocyt	Donor tes		Cryopreserved Donor Oocytes		
Year(s)	2013	2014	2015 ^a	2013	2014	2015 ^a
Number of cycles	8921	6929	5982	2227	2886	3215
Average number of transferred embryos	1.7	1.6	1.6	1.6	1.6	1.6
Cancelled Cycles (%)	11.7	7.0	9.1	8.5	12.4	15.0

^a2015 data were calculated from a preliminary report distributed by SART

Fig. 1 Live birth rates with fresh versus cryopreserved donated oocytes, 2013–2015. * *P* < 0.001; Live birth rates were compared using the two-tailed Fisher's exact test and Wilson confidence interval for binomial proportions. ^ 2015 data were calculated from a preliminary report distributed by SART

Lack of reproducibility

Journal of Assisted Reproduction and Genetics (2018) 35:1157–1158
https://doi.org/10.1007/s10815-018-1184-7

COMMENTARY

Issues related to human oocyte vitrification: a consideration of the facts

Samer Tannus¹ • Michael-Haim Dahan ².³ • Justin Tan⁴ • Seang-Lin Tan².³

Journal of Assisted Reproduction and Genetics (2018) 35:1159–1160
https://doi.org/10.1007/s10815-018-1200-y

COMMENTARY

CrossMark

Lack of reproducibility in oocyte vitrification calls for a simpler (whether semi-manual or automatic) and standardized methodology

Human Reproduction Update, Vol.23, No.2 pp. 139-155, 2017
Advanced Acces publication on November 4, 2016 doi:10.1093/humapd/dmw038

Docyte, embryo and blastocyst
cryopreservation in ART: systematic
review and meta-analysis comparing
slow-freezing versus vitrification to
produce evidence for the development
of global guidance

Laura Rienzi^{1,*}, Clarisa Gracia², Roberta Maggiulli¹,
Andrew R. LaBarbera³, Daniel J. Kaser⁴, Filippo M. Ubaldi¹,
Sheryl Vanderpoel^{5,6}, and Catherine Racowsky⁴

GENBR Cerus for Reproductie Medicine. Clina: Vala Guida, in de hazura 2, Rous, lay ⁷Ordion of Reproductie Endocrotology
and Inferrity. Department of Celestrics and Gynecology. Unbervage of Renopholas, Platechia, Pol. 24, 5 American Society for
Reproductive Pedicine, Brimgham, Albahuma 3216, USA ⁷Ougarment of Obsertion and Gynecology, Belgum and Women's Folgram and
Harvand Medical School, Boom, May 015, USA ⁸Department of Obsertion and Gynecology, Belgum and Women's Folgram med of

Research, Development and Research Training in Human Reproduction), Geneva, Switzerland (at the time of the study) Population Council, Reproductive Health Programme, New York, USA

Amir Arav¹ · Pasquale Patrizio^{1,2}

Vitrification: the case for automation

- Totally manual process
 - ➤ High level of specialisation and experience
 - Incubation timings with cryoprotectants are critical
 - Variability in results

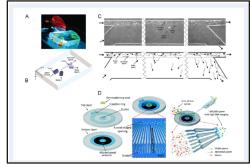
PRO

- Standardises process quality
- Saves time
- Avoids learning curve

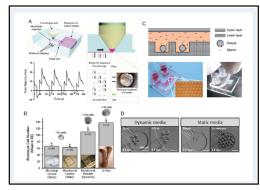
CONS

- Warming procedure still manual
- Initial financial investment

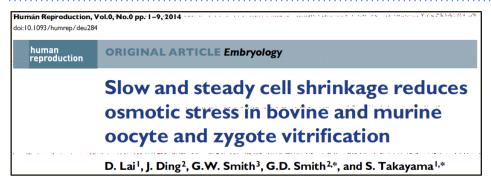
How can we improve quality of the process?

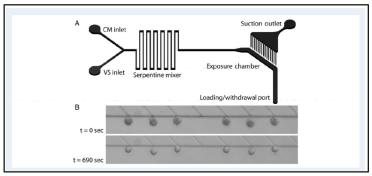

- Efficiency and consistency need to be improved and only an automated vitrification system can achieve this.
- Ideal device should enable:
 - Easy and safe handling
 - Time and temperature control
 - Minimize human manipulation: standarization of volumes and timings
 - Reduce operator time required per procedure
 - Closed systems ==> avoid risk of contamination
 - Automatic labelling-tracking system
 - > Automated sample transfer to storage containers.

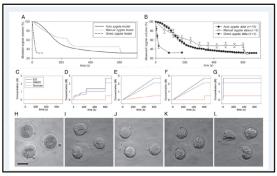
Microfluidic technologies



- Microfluidics considered both science and technology.
- At least two characteristics of microfluidics
 - Mechanical
 - Biochemical
- Controlled cryoprotectant exposure


Microfluidic sperm sorter




Embryo culture with microfluids

Microfluidic technologies in vitrification

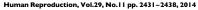
- Already used as cryoprotectant exchange system to generate automated,
 continuous and gradual cryoprotectants addition.
- Developed user-friendly microfluidic CPA exchange system.
- May also be advantageous to an automated warming process

First digital microfluidic device

OPEN & ACCESS Freely available online

Digital Microfluidic Processing of Mammalian Embryos for Vitrification

Derek G. Pyne^{1®}, Jun Liu^{1®}, Mohamed Abdelgawad^{2*}, Yu Sun^{1*}


1 Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada, 2 Department of Mechanical Engineering, Assiut University,
Assiut, Egypt

September 2014 | Volume 9 | Issue 9 | e108128

	Survival Rate	Development Rate			
control (non-vitrified)	100% (14/14)	93% (13/14)			
manual	73% (11/15)	91% (10/11)			
DMF Chip	77% (10/13)	90% (9/10)			

- First digital microfluidic device showing feasibility to perform automated embryo processing for vitrification
- Low number but promising results.

Advanced Access publication on August 27, 2014 doi:10.1093/humrep/deu214

human reproduction

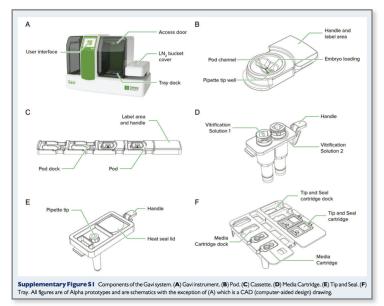
ORIGINAL ARTICLE Embryology

Embryo vitrification using a novel semiautomated closed system yields in vitro outcomes equivalent to the manual **Cryotop method**

Tammie K. Roy^{I,*}, Susanna Brandi^I, Naomi M. Tappe^I, Cara K. Bradley^I, Eduardo Vom², Chester Henderson², Craig Lewis², Kristy Battista², Ben Hobbs², Simon Hobbs², John Syer², Sam R. Lanyon¹, Sacha M. Dopheide², Teija T. Peura¹, Steven J. McArthur³, Mark C. Bowman³, and Tomas Stojanov³

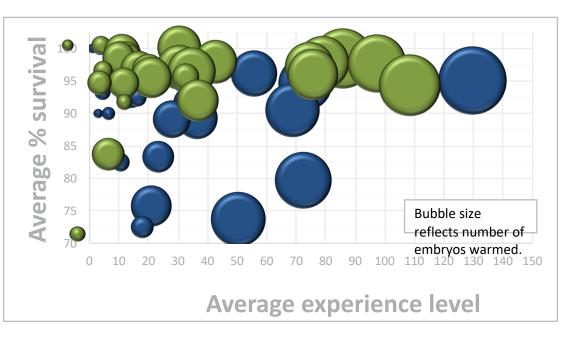
Genea Biomedx, 321 Kent Street, Sydney, NSW 2000, Australia Planet Innovation, 81-89 Cotham Road, Kew, VIC 3101, Australia Genea, 321 Kent Street, Sydney, NSW 2000, Australia

*Correspondence address. E-mail: tammie.roy@geneabiomedx.com.au


					24 h		48 h	
Treatment	#	Recovered	Survived	Re-expanded	Fully hatched blastocyst	Hatching/expanded blastocyst	Fully hatched blastocyst	Hatching blastocys
Cryotop	13	13 (100%)	10 (77%)	7/10 (70%) ^a	I (8%)	9 (69%)	2 (15%)	3 (23%)
Gavi	23	23 (100%)	21 (91%)	14/18 (78%) ^a	4 (17%)	12 (52%)	4 (17%)	6 (26%)

^aNot all embryos were assessed for re-expansion.

GAVITM: first automated vitrification instrument



- Semi-automated system
 - Plunge in liquid nitrogen
 - Warming procedure
- GAVI provides automated cryoprotector exposure and sealing device.
- Elimination of variability:
 - During exposure to cryoprotectants:
 - Temperature
 - Volume (equilibration media)
 - Microfluidic technology
 - Constant volume of vitrification media into device

Variability also with embryos

Recovered embryo survival by scientist – Gavi vs. Cryotop

Gavi Cryotop	Gavi		Cryotop	
--------------	------	--	---------	--

Values	GAVI	Cryotop
Embryos warmed	361	361
# clinics	6	8
# freeze scientists	28	25
% recovered	98.30%	99.70%
Average survival %	96.50%	88.10%
Embryo with 100% survival	62.0%*	43.3%*
Embryos with 50% survival	0.80%	7.20%

^{*} P value < 0.0001

GAVI vs Cryotop: survival rate of human blastocysts

Summary of survival rate outcomes

	Gavi	Cryotop
# vitrified	907	932
# warmed (for ET)	270	288
# recovered	267 (98.9%)	288 (100%)
# initial survival >75% (of warmed)	265 (98.1%)	284 (98.6%)
Average initial survival % (of warmed)	95.9%	96.4%
# initial survival 100%	157	145
% initial survival 100%	58.1%*	50.3%*

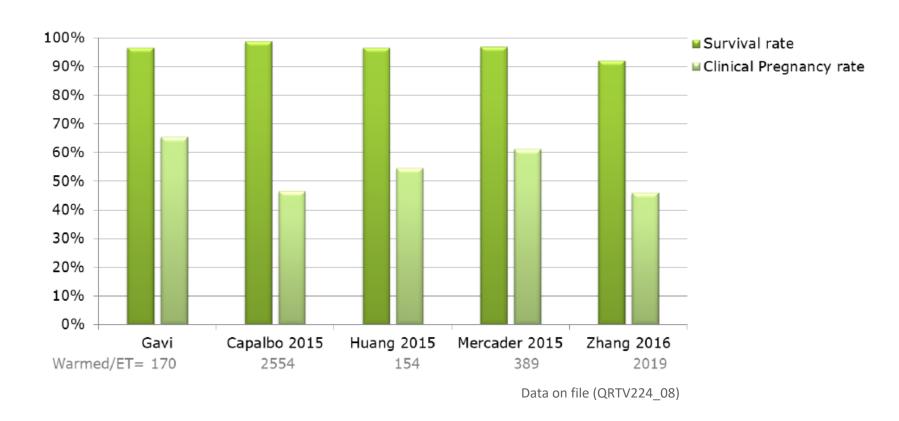
Data on file (QRTV224_08)

*p=<0.05

Clinically vitrified human blastocysts: implantation and ongoing pregnancy rates

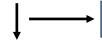
• Summary of embryo transfer and pregnancy outcomes

	Gavi	Cryotop®
Average of Age	36.00	35.99
# ETs	265	284
Sum of #ETd	265	284
# + βhCG	183	179
# FH pregnancies	151	156
Sum of FHs	154	158
% + βhCG	69.1%	63.0%
% FH Pregnancies	57.0%	54.9%
Conversion + βhCG to FH	82.5%	87.2%
Loss +βhCG to FH	17.5%	12.8%


Data on file (QRTV224_08)

Comparison of clinical outcomes from GAVI other publications

Results after vitrification using Gavi versus after Cryotop vitrification



First results with GAVI in human biopsied blastocysts

PGD program I.U. Dexeus

Blastocysts biopsy and CGH

CRYOTOP VITRIFICATION

36 ABNORMAL blastocysts

WARMING

0/36 Lost embryos

2/36 No survival

2/36 No re-expansion

32 Survival and re-expanded blastocysts (88.9%)

GAVI VITRIFICATION/WARMING

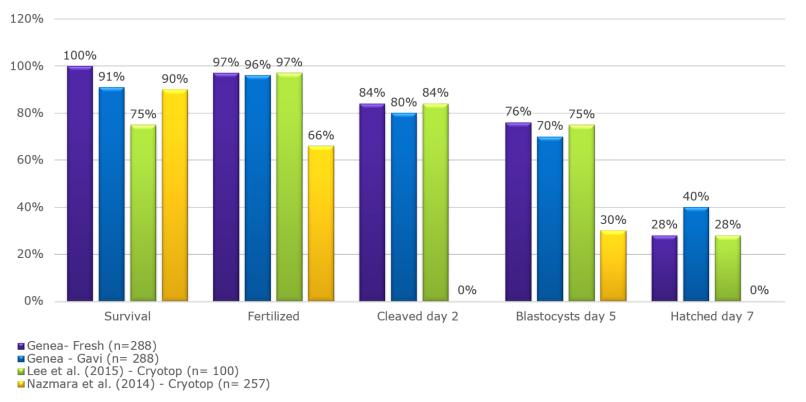
0/32 Lost embryos

1/32 No survival

3/32 No re-expansion

28 Survival and re-expanded blastocysts (87.5%)

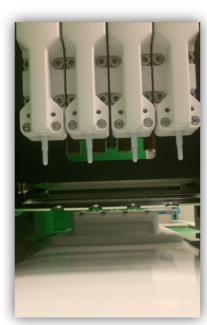
VALIDATION



GAVI: mouse oocytes fresh and vitrified with different vitrification devices

Dexeus P mujer

Survival rate and embryo development


Source:Lee 2015, Mazmara 2014, Brandi S¹, Ho PPY¹, Anastasi M², Roy TK¹ – Genea at Kent St (Sydney, Australia) site, publication in process of submission.

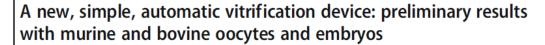
Oocyte protocol validation: H. U. Dexeus

- Oocyte donation cycles
- Vitrified oocytes ≥ 8 MII
- Cryotop®: ≥4 MII
- GAVI™: ≥4 MII
- All oocytes warmed in each recipient cycle
- Embryos transferred on day 3
- Blind embryo selection using ASEBIR score (Cryotop vs GAVI)
- Embryo vitrification on days 3 or 5

Oocyte protocol validation: H. U. Dexeus

	Cryotop	GAVI	Total
Oocyte donation cycles (n)	23	23	23
Vitrified oocytes (n)	147	155	302
Recipient cycles (n)	13	13	13
Warmed oocytes (n)	63	73	136
Survival (%)	76.2	76,7	76.5
Fertilization (%)	73	76,8	75.0
Ongoing embryos (%)	54.3	53.5	53.8

ASRM 2017


• First 2 births with GAVI worldwide

New devices coming... SARAH

Journal of Assisted Reproduction and Genetics (2018) 35:1161–1168 https://doi.org/10.1007/s10815-018-1210-9

TECHNOLOGICAL INNOVATIONS

Amir Arav¹ • Yehudit Natan¹ • Dorit Kalo^{2,3} • Alisa Komsky-Elbaz^{2,3} • Zvika Roth^{2,3} • Paolo Emanuele Levi-Setti⁴ • Milton Leong⁵ • Pasquale Patrizio^{1,6}

	Oocytes	8-cell embryo	Blastocysts	Control (fresh Embryos)
Number	40	35	165	42
Survival (%)	38/40 (95)	33/35 (94)	160/165 (97)	_
Viability (%)	38/38 (100)	_	_	_
Blastocysts (%)	_	33/35 (94)	_	42/42 (100)
Hatching (%)	_	28/35 (80)	135/165 (81)	32/42 (76)

Conclusions

- Vitrification optimization allows large range of reproductive strategies
- Very good results but margin for improvement
- Manual technique => high results variability especially with oocytes
- Urgent need for vitrification and warming optimization ideally automated with minimal reliance on manual techniques
- First microfluidics vitrification applications show promising results

Conclusions

- GAVI can minimise small variations between different manual vitrification processes.
- Demonstrated efficiency with blastocysts comparable to the most efficient manual techniques
- ➤ Results appear promising for oocyte vitrification with GAVI™
- Vitrification automation now a real option for laboratories
- However considerable financial investment required and actual implementations still limited

Thank you for your attention Gràcies per la seva atenció

Hospital Universitari Dexeus

